Numpy Practise

numpy practise

prerequisize

Generate matrices A, with random Gaussian entries, B, a Toeplitz matrix, where A ∈ R n×m and B ∈ R m×m , for n = 200, m = 500

由于各个题目中都需要用到某些矩阵。在gen.py中对他们做出了定义

# /gen.py
mu, sigma = 0, 10
n = 200
m = 500
A = np.random.normal(mu, sigma, (n, m))
A = np.matrix(A)

首先用np.random.normal产生一个n×m的高斯矩阵。

h = np.arange(1, m+1)

padding = np.zeros(h.shape[0] - 1, h.dtype)
first_col = np.r_[h]
first_row = np.r_[h[0], padding]

B = linalg.toeplitz(first_col, first_row)
B = np.matrix(B)

上述代码用来产生Teoplizt矩阵.以后的文件中,只需要importgen.py即可

ex1

Calculate $A + A$, $AA^T$ , $A ^TA$ and $AB$. Write a function that computes $ A(B- \lambda I) $ for any $\lambda$.

import numpy as np
from gen import A
from gen import B
Sum = A + A

T1 = A * A.transpose()
T2 = A.transpose() * A

prod = A * B

print(A)
print(B)
print(Sum)
print(T1)
print(T2)
print(prod)

//TODO: lack one function 在numpy中,转置用matrix.transpose()。乘法直接使用*即可。如此即可方便地做各类矩阵运算。

ex2

Generate a vector b with m entries and solve Bx = b.

import numpy as np
from numpy.linalg import inv
from gen import A, B, m
b = [i for i in range(m)]
b = np.array(b)
b.shape = (m, 1)

ans = inv(B) * b
print(repr(ans))

上述代码中,b是一个向量。语句

b.shape = (m, 1)

把b变为一个列向量。b.shape是b的一个公有成员,类型是Tuple。 求逆的函数是numpy.linalg.inv

于是方程组的解可以表示直接运算inv(B) * b

ex3

Compute the Frobenius norm of A: kAk F and the infinity norm of B: kBk ∞ . Also find the largest and smallest singular values of B.

import numpy as np
from gen import A, B
res = np.multiply(A, A)
FrobeniusNorm = np.sqrt(np.sum(res))
print('FrobeniusNorm', FrobeniusNorm)

InfinityNorm = np.max(np.abs(B))
print('infinity norm', InfinityNorm)

例用numpy对矩阵的特殊支持,可以化简上述的运算。

FrobeniusNorm而言,其值为 于是可以使用np.multiply(A, A),让矩阵中每个元素变为原来的平方。 再采用np.sqrt(np.sum(res))作矩阵范围内的求和。并对和值求平方根。

对于InfinityNorm而言,其值就是所有元素的绝对值的最大值。 np.max(np.abs(B))即可直接求出该值。

ex4

Generate a matrix Z, n × n, with Gaussian entries, and use the power iteration to find the largest eigenvalue and corresponding eigenvector of Z. How many iterations are needed till convergence? Optional: use the time.clock() method to compare computation time when varying n.

//TODO: clock()

# power iteration
#TODO: maybe bugs
import numpy as np
from random import random
mu, sigma = 0, 50
SIZE = 200
size = (SIZE, SIZE)
Z = np.random.normal(mu, sigma, size)
Z = np.matrix(Z)
epsilon = 1e-10
def Norm(matrix):
    '''
    return infinity norm
    '''
    #return np.sqrt(np.sum(np.multiply(matrix, matrix)))
    return np.linalg.norm(matrix)

INIT_X = np.array(np.random.randn(SIZE))
INIT_X.shape = (SIZE, 1)
INIT_LAMBDA = random() * 100
x = INIT_X
lamb = 3
times = 0
while True:
    times+=1
    tmp = Z * x
    #print('tmp', tmp)
    norm = Norm(tmp)
    nlamb = norm
    x = np.divide(tmp, norm)
    if times % 10000 == 0:
        print('{} iteration'.format(times))
        print(x)
        print(lamb)

    if abs(nlamb - lamb) < epsilon:
        break
    lamb = nlamb

    if times == 1e10:
        break
    
print(lamb)
print(x)
if times == 1e10:
    print('no solution')
else:
    print('use time {} iteratons'.format(times))

INIT_XINIT_LAMBDA采用随机数的方式选择迭代初值。 while True是整个程序的核心,它按照Power Iterator算法的定义,直接迭代出所求的值。

当检测到相邻两次迭代的$\lambda$相差小于一个常数(1e-4)时,算法终止。

ex5

Generate an n × n matrix, denoted by C, where each entry is 1 with probability p and 0 otherwise. Use the linear algebra library of Scipy to compute the singular values of C. What can you say about the relationship between n, p and the largest singular value?

import numpy as np
n = 50
def gen(p):
    raw = np.random.random((n, n))
    return [
        [1 if i <= p else 0 for i in rows] 
            for rows in raw
    ]
def gen_matrix(p):
    return np.matrix(gen(p))

for idx, i in enumerate(np.arange(0, 1, 0.01)):
    ms = 0
    for t in range(1000):
        m = gen_matrix(i)
        u, s, vh = np.linalg.svd(m)
        ms += np.max(s)
    ms /= 1000
    print('#{}, {}, {}'.format(idx, i, ms))

gengen_matrix函数用来产生一个符合题意的随机的矩阵。 其思路是,首先随机产生一个值随机地介于[0, 1]的矩阵。然后对其作二值化。将[0, p]映射到1,将[p, 1]映射到0.

在得到该矩阵后,使用np.linalg.svd得到SVD分解的三个矩阵。 使用np.max函数得到特征值的最大值。

ex6

Write a function that takes a value z and an array A and finds the element in A that is closest to z. The function should return the closest value, not index. Hint: Use the built-in functionality of Numpy rather than writing code to find this value manually. In particular, use brackets and argmin.

import numpy as np
A = np.arange(40)
z = 12.39

def NearestNeighbour(A, z):
    tmp = np.abs(np.subtract(A, z))
    idx = np.argmin(tmp)
    return A[idx]

print(NearestNeighbour(A, z))

同样利用numpy内置支持的矩阵运算。 np.subtract会将向量(矩阵)中的每个元素都减去同一个值。 np.argmin返回向量(矩阵)中最小的元素的坐标。 最后的return A[idx]将坐标转化为向量中的值。